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Abstract Affine Hamiltonians are defined in the paper and their study is based especially on
the fact that in the hyperregular case they are dual objects of Lagrangians defined on affine
bundles, by mean of natural Legendre maps. The variational problems for affine Hamiltoni-
ans and Lagrangians of order k > 2 are studied, relating them to a Hamilton equation. An
Ostrogradski type theorem is proved: the Hamilton equation of an affine Hamiltonian 4 is
equivalent with Euler—Lagrange equation of its dual Lagrangian L. Zermelo condition is
also studied and some non-trivial examples are given.
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1 Introduction

Higher order Lagrangians and Hamiltonians are considered by Ostrogradski in the study
of equivalence problem of Euler—Lagrange and Hamilton equations of a hyperregular La-
grangian. A modern form of these ideas is considered in [1, Chap. 3, Sect. 1.4], using the
higher order tangent bundles 7% M of a manifold M, where the dual Hamiltonian defined
by a strictly convex Lagrangian of higher order and the Hamilton equation are considered
both on T*T*~! M. In [5], one uses also the bundles of accelerations in a systematic study of
mechanical systems, using the Klein formalism. A theory of higher order Hamilton spaces
was recently studied in [7], but the duality Hamiltonian—Lagrangian is not canonical and
the action of the Lagrangian and its dual Hamiltonian are not related by canonical Legendre
maps. An affine framework for Lagrangians and Hamiltonians can be found in [3, 4, 12] or
[11]. In order to try other methods one can follow similar ideas used in [2].

In this paper we consider a new definition, that of an affine Hamiltonian of higher or-
der k > 2 on a manifold M. An affine Hamiltonian is an affine section in an affine bundle
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with a one dimensional fiber and it is studied using local real functions (i.e. local Hamil-
tonians). These local Hamiltonians were considered by Arnold—Givental, in the case when
the Lagrangian is convex (see Proposition 6.1), but not stressing their local form. An affine
Hamiltonian and a Hamiltonian considered in [7] (called in our paper a vectorial Hamil-
tonian) are related by an affine section.

We define the energy of an affine Hamiltonian as a global Hamiltonian (of order one) on
T*~!'M. The action of an affine Hamiltonian is defined on curves on T*M an it has as crit-
ical curves that given by the Hamilton equation of the energy. Considering a hyperregular
Lagrangian of order k > 2, a canonical duality Lagrangian-affine Hamiltonian is constructed
by natural Legendre/Legendre* maps. The actions on curves of the Hamiltonian and its dual
Lagrangian are related by a Ostrogradski type theorem: a hyperregular Lagrangian L and its
dual affine Hamiltonian /4 of order k have the same energy, thus the same Hamiltonian vec-
tor field (Theorem 6.3) and the Hamilton equation oh % and the Euler-Lagrange equations
of L have the same solutions as curves on M (Corollary 6.1). The Ostrogradski theorem
stated in [1, Chap. 3, Sect. 1.4] for a strictly convex Lagrangian is extended in this way to a
hyperregular Lagrangian of order k. The action on curves is different from that considered
in [7], but we investigate here some similar Zermelo conditions; we find that there are no
general Zermelo conditions for affine Hamiltonians (Proposition 5.1).

The consideration of an affine Hamiltonian allows to perform a construction of some
Legendre and Legendre* maps associated with a Lagrangian and an affine Hamiltonian re-
spectively, without using affine sections. The use of an affine section in the construction of
Legendre maps, as in [7, 8], makes the Legendre and Legendre* maps non-canonical as-
sociated to Lagrangians and Hamiltonians, thus our construction improves this aspect. The
integral action of a (vectorial) Hamiltonian of order k on M, as defined and studied in [8,
Chap. 5], seems to be not related, in the hyperregular case, to any integral action of a La-
grangian of order kK on M. Notice also that the Hamilton equation obtained in [8, Chap. 5]
is completely different as that obtained bellow, and its solutions as well.

In the first section we briefly discuss the Legendre maps between vectorial and affine
Hamiltonians on one way and Lagrangians on the other way, defined on open sets of affine
spaces.

A recursive definition of the k-tangent spaces (as affine bundles) is performed in Sect. 2.
We stress the role played by a vector pseudofield in the construction of 7% M, since a similar
idea can be followed in order to study other cases (for example to construct a time dependent
k-tangent space; notice that the case studied in this paper is time independent).

The variational problems for affine Hamiltonians and Lagrangians of order k > 2 are
studied in Sect. 3 and Sect. 5 respectively, relating them to the Hamilton equation. The
Zermelo condition is studied in Sect. 4. Some non-trivial examples are considered in Sect. 5.

2 Vectorial and Affine Hamiltonians and Lagrangians on Affine Spaces

Let A be a real affine space, modeled on a real vector space V. The vectorial dual of A
is AT = Aff(A, R), where Aff denotes affine morphisms. An affine frame on A is a couple
R = (0, B), where 0 € A is a point and B = {e;};_;; C V is a vector base. If z € A is
an arbitrary point, then its affine coordinates (or simply coordinates) in this frame, are the

coordinates (zi)i:ﬁ of the vector oz, i.e. 07 = Z'e;.
Consider now an affine frame R = (o, BB) of A and the affine maps ¢° : A — R, &%(z) = 1
and &' : A — R, &(z) =7', (V)i =1, n. It is easy to see that R = {e°,¢',...,¢"} c AT is

a base. Let us consider the linear maps j : R — A" and & : A" — V* defined using the
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bases by j:R— A" j() =& and 7 : A" - V¥, 7€) =0, 7(&) =&, i =1, n, where
={e'},_1;; C V*is the dual base of B. It is easy to see that the definitions of j and 7 do
not depend on the frame R and there is a short exact sequence of vector spaces having the

form 0 —> R-5> A" 5 V* — 0. Notice that 7 is also the projection of an affine bundle with
the fibre modeled on R.

If R = (0,B) and R’ = (¢/, B') are two affine frames, then z' = af,z"/ +da', thus & =
a ¢ +a eO C0n51der1ng the bases R', (R')" c Af, then &€ € A" has the forms & = we® +
.Ql e =wed + Ql/e and the following formulas hold:

9,'/ = a;,SZi,
o =w+ 2;a.

Let us consider now Lagrangians and Hamiltonians on a real vector space V.

A Lagrangian (a Hamiltonian) on V is a differentiable map L : V\Vy — R (respectively
H : V*\W, — R), where V, C V (respectively Wy C V*) is a closed subset (for example
an affine subspace). Differential of L (or H) defines the Legendre map (Legendre* map
respectively). If the Hessian of L (respectively H) is non-degenerated in every point, then
one say that L (respectively H) is regular. In particular, if the Hessian of L (respectively
H) is strict positively defined, then L (respectively H) is regular. Regular Lagrangians and
Hamiltonians are hyperregular provided that Legendre maps are diffeomorphisms on their
images; they are related by a duality given by Legendre maps, using the relation L(z') +
H(Q2)=7%:.

Let us consider now Lagrangians and Hamiltonians on an affine space A.

A Lagrangian on A is a differentiable map L : A\ Ay — R, where Ay C A is a closed
subset (for example an affine subspace). If the Hessian of L is non-degenerated, then we
say that L is regular. In particular, if the Hessian of L is strict positively defined, then L
is regular. The Legendre map £ : A\\A, — V* is defined also by the differential of L. If
L is a diffeomorphism on its image, we say that L is hyperregular; in this case L can be
related with a Hamiltonian H on V* by mean of a point zy € A\ Ay, using the relation
L(Z') + H(£2;) = (z' — z{)$2;. We say also that H is hyperregular. The consideration of zo
gives a H (called a vectorial Hamiltonian), thus the duality is not intrinsic. We see below
that it is possible to have an intrinsic duality.

An affine Hamiltonian on the real affine space A is a section of an open fibered subman-
ifold of the affine bundle A" > V*. It is defined by differentiable map h : V¥\W, — A",
such that 7 o h = ly+\w,, where Wy C V* is a closed subset. Using an affine frame (o, B),
then & has the form h(£2;) = (£2;, Hy(£2;)). If an other affine frame (o', B) is considered,

then Hj($2;) = Ho(£2;) + f2ia’. It follows that — ;’m = ajal, 55 thus the local func-
tions Hj and H, have the same Hessian, which depend only on /2. We call the Hessian of H;
and H, as the Hessian of h and we say that & is regular if its Hessian is non-degenerate.

Let h: V¥\W, — A" be an affine Hamiltonian and consider a point zo € .A. The fact that
Ho($2)) — 2,z = H($2y) — $2; - (zh +a') = H)(2i) — $2ia!,z = H(2i1) — 202}y implies
that H($2;) = Hy(82;) — Qizf) defines a vectorial Hamiltonian which is regular iff £ is regu-
lar. Conversely, if H : V*\W; — R is a vectorial Hamiltonian and z, € A is a point, then de-
noting Ho($2;) = H(£2;) + $2;z,, the map h : V*\Wy — A" given by h(£2;) = (£2;, Hy(52;))
defines an affine Hamiltonian. We say that & is hyperregular if H is hyperregular; it is clear
that the definition does not depend on the point z,.

Thus the vectorial and affine Hamiltonians are related as follows.
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Proposition 2.1 If zo € A is a given point and Wy C V* is a closed subset, then there
is a bijective correspondence between affine Hamiltonians and vectorial Hamiltonians on
VA W.

Notice that the correspondence defined above depends on the given point z € \A.

A given point zp € A and the canonical duality ¢ : V x V* — R, define together the
Liouville map C,, : A x V* — R, given by the formula C, (z, £2) = ¢(z — zo, £2), where
z — 7 denotes the vector Zpz.

Proposition 2.2 Let L : A\ Ay — R be a hyperregular Lagrangian on the real affine space
A and L : ANAy — V*\W, be the Legendre map. Then for every point zo € A, the map
H:VX\Wy— R, H(2) = CZO(L*I(.Q), ) — L(L7Y()) is a Hamiltonian on V*\ W,
and the affine Hamiltonian h : V*\Wy — A" corresponding to the point zo (according to
Proposition 2.1) does not depend on the point 7, depending only on the Lagrangian L.

Proof Using coordinates, the link between L and H is L(z') + H(£2;) = (z' — z})$2;,
where £71(£2)) = z'é;. It is easy to check (classical) that H is a Hamiltonian. The affine
Hamiltonian corresponding to the point zy according to Proposition 2.1 has the form
(£2) —h>(.Q,-, Ho($2:)), where Ho(£2;) = H(82;) + z,§2; = 2'2; — L(z"), thus the conclusion
follows. 0

A converse correspondence may be performed as follows.

Proposition 2.3 Let h : V*\Wy — A" be a hyperregular affine Hamiltonian on the real
daffine space A. Consider a point zo € A, the hyperregular vectorial Hamiltonian H :
V*\Wy — R corresponding to the point zy (according to Proposition 2.1), H : V*\Wy —
V\W, its Legendre map and Ay = zo + W,. Then

(1) The map Hy : V\Wy — A\ Ag given by the formula Ho(§2) = H(82) + zo is a diffeo-
morphism (called the Legendre map of h).

(2) The real function L : A\ Ay — R given by the formula L(z) = C,(z, H Yz —z20)—
H(H™'(z — z0)) is a hyperregular Lagrangian.

(3) Both Hy and L do not depend on the point zy, depending only on the affine Hamil-
tonian h.

Proof Using coordinates, 7 has the form (£2; )—h>(.(2,, Hy(£2;)) and H($2;) = Hy($2;) —
zO.Q Thus H(2)' = BH = gg" zO, then (1) follows, since % is hyperregular. The proof
of (2) uses a similar argument as in the Lagrangian case. Using also coordinates, the link
between L and H is L(z) + H($2) = (' —z})$2;, where 2 = ;&' = H~'(z — z0). Itis also
easy to check (classical) that L is a Lagrangian. If the affine Hamiltonian / has the form
h(2) = (2;é', Hy(£2;)), then H has the form H(2) = Hy(2) —zf).Q,-, where H™ ! (z—z9) =
Qe = 2. Thus L(z) = (7' —z))2i— H(2) = (' — z0)Q2i— Hy(2) + 22 = 7/ 2;+
Hy(£2), thus (2) follows. Using coordinates as above, it follows that the affine coordinates
of Hy(£2) are (aH“) thus Hy depends only on Hj and implicitly on /. Taking the coordinates

(z") of z € A\ A in the form 7’ "HO and denoting, as before, H™!(z — z9) = 2;¢' = 2, we

have H(£2) = z — zo. Using also (2), we have H(£2) = H(2) + z0 = z, thus 2 = HO (2).
Since L(z) = 7/ §2;4+ Hy(£2), the conclusion follows. |
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3 An Inductive Construction of the Higher Acceleration Bundles

An inductive definition of the higher order spaces T*M are performed, for example in [1,
Chap. 3, Sect. 1.4], where the notation J k is used for T*M. According to this, using our
notations, T°M =M, T'M =TM, ; : T'M — T°M is the canonical projection and for
k> 1, T*'M is the affine subbundle of the tangent bundle TT*M of vectors & € T, T*M
such that considering the differential my, : T,T*M — TrnT k=1p of the projection 7y :
T*M — T*'M, then 7, (§) = x and 74, : T**'M — T*M is induced by the canonical
projection TT*M — T*M. Notice that it follows a inclusion map h; : T"M — TT* "' M,
which is an affine bundle map. The definition of T*M is very simple and has a geometric
description, but is difficult to be used, for example in local coordinates. We give below a
different construction, using a vector pseudofield which comes from the Liouville vector
field.

Let M be a manifold of dimension m and tM = (T M, =, M) its tangent bundle. Consid-
ering an atlas of M, we denote by (x') the coordinates on an arbitrary domain U C M and
by (x?, y/) the coordinates on the domain 7 ~'(U) C TM (i, j = 1, m). On the intersection
of two open domains of coordinates on T M, the coordinates change according to the rules

i i oo
x"=x"(x"), y=—y"
ax!
A surjective submersion E 5 Mis usually called a fibered manifold. An affine bundle

E 5> M is a fibered manifold which the change rules of the local coordinates on E have the
form

F=rah, =gy ot (). M

An gffine section in the bundle E is a differentiable map M = E such that 7 o s = idy, and
its local components change according to the rule 5 (%) = g§ (x/)5” (x/) + v*(x/). The set
of affine sections is denoted by I"(E) and it is an affine module over F(M), i.e. for every
fi,..o, fp € F(M) such that f +---+ f,=1and sy,...,s, € I'(E), then fis; +---+
fpsp € I'(E), where the affine combination is taken in every point of the base. Using a
partition of unity on the base M one can be easily proved that every affine bundle allows an
affine section. i

A vector bundle E > M can be canonically associated with the affine bundle E > M.
More precisely, using local coordinates, the coordinates change on E following the rules
X=x(x)), 2% = g (x/ )z?, when the coordinates on E change according the formulas (1).

Every vector bundle is an affine bundle, called a central affine bundle. In this case
v*(x/)=0.

Let E > M be a fibered manifold. Consider the subalgebra Fy = {n* f| f € F(M)} C
F(E) of projectable functions. A derivation on the fibered manifold is an R-linear map
I:F7y— FE)suchthat I'(f-g)=T(f)-g+ f-T'(g), ¥)f, g € Fo. Let us associate
with every domain of adapted coordinates 7! (U) C E the vector field I'y = I" (x" )%,
which we call the action of I" on F(;r =" (U)). We call this association a vector pseudofield
on E. Forexample I"" = y' - defines a vector pseudofield on the vector bundle 7 M 5 M.

The tangent bundle 7 M is a vector bundle, but, for k > 2, the k-accelerations bundles
T*(M) are affine bundles over 7%~ (M), that can be defined inductively as follows.

Let us denote M = T°M, w = 7; and TM = T'M and consider the vector pseudofield

o <l
ro=yi ﬁ on the vector bundle 7' M — T°M . Let us suppose that the vector pseudofields
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'™ on T"M and the r-acceleration bundles 7" M have been defined for 1 <r <k — 1,
as affine bundles over 7"~' M. Then T*M is defined according to the change rule of the

local coordinates given by ky®" = k%y(k)i + 1P (D7) and the vector pseudofield
Iy = =" + ky® o where I}/™" is considered as a (local) vector field on T*M

and U is the domain which corresponds to the coordinates (x'). Notice that I, l(,k) =yl 4

ax!
2y®i 8;31)1- + e ky® M+l>l and on the intersection of two domains corresponding to U
and U’, we have Fl(/]f) =}’ - Flﬁk)(y(")"’)#.

Proposition 3.1 The fibered manifold (T*M , mty, T*"' M) is an affine bundle, for k > 2.

Notice that the coordinates y? are in accordance with those systematically used by
Miron in [6-10].

The vector bundle canonically associated with the affine bundle (T*M, m;, T*~' M) is the
vector bundle g; T M, where gy_; : T*"'M — M is qy— = m om0+ - -omi_;. The fibered
manifold (T*M, g, M) is systematically used in [6, 10] in the study of the geometrical
objects of order k on M, in particular the Lagrangians of order k on M. The total space of the
dual g}_,T*M of the vector bundle g; T M is also the total space of the fibered manifold
(T*'M x 3 T*M,r,, M) and it is used in [7, 8] in the study of the dual geometrical objects
of order k on M, in particular the Hamiltonians of order £ on M. In the sequel we denote
G T*M = T** M, considered as a vector bundle over T*"' M.

The tensors defined on the fibers of the vertical vector bundle ka_lM — T*M of the
affine bundle (T*M, m, T*"'M), or on the fibers of an open fibered submanifold of
VE M — T*M, are called d-tensors of order k on M.

Considering local coordinates: (x', y?, ..., y®=Diyon T*=1M and (x!, yV7, ..., y*=Di,
P©)i»---» Pa—nyi) on T*T*=1 M they change according to the rules:
y oxt
Wi’ — i X
y I
i’ i’
2y = ﬂl)iﬂ + 2y<2)iM
9xi ay(l)i ? 2)
o <3y(k—2)i’ ~ Aay(k—Z)i’
(k—Dy* = y(”’T o k=1y* UZW
and: y . )
o ox! 4 ay(l)z . N 8y(k71)z v
Poi = WP(O)I’ Wp(l)l’ axi Dk—1yi’s
B ay(l)i’ ay(kfl)i’
P = Wp(l)i’ +- Wp(kfl)i’v 3)
. dyk=Di
Pk-ni = Wp(k—l)i’
respectively.
From formula (3) it follows that there is a canonical projection of an affine bundle
m:7*7""'M - "M, 4
. . . I’ . . .
where (x', yV7 L yED oy paens) = (8, y W L yEYE b,
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4 The Variational Problem for Affine Hamiltonians of Order k

In this section we define affine Hamiltonians of order k > 2 on a manifold M and study the
variational problem of their integral action on curves on 7*M. We define also the energy of
an affine Hamiltonian of order k as a function on 7*T*~! M and we prove that the integral
curves of its Hamilton vector field are natural liftings of solutions of the variational problem
of the integral action. The case k = 1 is that studied in the classical mechanics, the affine sit-
uation occurs only for k > 2. In that follows we suppose that k > 2, if any other assumption
is made.

Let us consider the affine bundle T75M =5 T*~'M and u € T*~'M. The fiber T*M =
T Y(u) € T*M is a real affine space, modeled on the real vector space T, ,)M. The vec-
torial dual of the affine space T"M is T“M Aff(TkM R), where Aff denotes affine
morphisms. Denoting by T*"M =, .yu-1,, T¥'M and =¥ : T¥'M — T*~'M the canoni-
cal projection, then it is clear that (T*"M, 7, T" M) is a vector bundle. There is a canon-
ical vector bundle morphism of vector bundles over T'M, IT:T""M — T*M. This
projection is also the canonical projection of an affine bundle with the fiber R. An affine

e~ o~

Hamiltonian of order k on M is a pointed section & : T**M — T*' M of this affine bundle
(possibly continuous on the image of the null section), or a section of an open fibered sub-
manifold of IT. Thus an affine Hamiltonian of order k on M is given by a differentiable map

h: T"*M — T"TM suchthat [Toh =1——.

,‘*M
We consider some local coordinates (x') on M, (x', y7 ... y*=Diy on T*1p1, and
(xf, yWi L y&=Dip T) on T*TM. Then the coordinates p; and T change accord-

ing to the rules p; = ;(fii, piand T' =T+ %Flgk_l)(y(k_l)i/)%l’i respectively. The vec-

tor bundle morphism /7 is given in local coordinates by (et yOi oy &= T)l
(xf, yWi . y&=Di 5.y, Thus the local function Hy changes according to the rules
Hy(x", y 7y O iy
— Ho(xl yDi *k=D)i F(" (ki 0% 5
- O(X,y yeees Y 7P1)+ ( )8,/17: ()

Notice that the corresponding map h : T**M — T*' M has the local form h(x!, yi, ...,
(k—1)i

YEDL py =l y M y“‘f‘f", pis HoGe' y W,y D7 pyy).
It is easy to see that 220 9[) = % % + %Fék_l)(y(k_l)"/). Thus there is a map H : T M —
i’ o opi
T*M, which we call the Legendre* map, given in local coordinates by (x!, y™Vi, ...,
y(kfl)z pi) = (xi, y<1)z ) y(kfl)z H'), where H' (x', y(l)z ) y(k—l)z, pi) = Bﬂ(xz y<l)z
y&=Di . Di ). We say also that & is hyperregular if H is a global dlffeomorphlsm Since
dZH
D 3; - = %)‘7 %:‘:J 8‘;;‘} , it follows that A"/ = ‘; ({:o is a symmetric 2-contravariant d-tensor,
i’ P iPj

which is non-degenerate if /4 is hyperregular.
For any curve y : [0, 1] - T*M , we define the integral action of h along the curve y by
the formula

I(y) /1 I L 4o dt, (6
O A R e T 7 ) P 7R s i P

where y has the local form ¢ KR (x'(t), pi(t)). The critical condition (or Fermat condition in
the case of an extremum) can be used for the integral action using similar arguments as in
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[8, Chap. 5], where it is used in the case of extremum and it is called as extremum condi-
tion; we sketch below these arguments. The lift y : [0, 1] — T** M of y has the local form

NP =
r— (xl(t)s d_lt(t)v"'9mdtk_—zi

field n; along the curve y having the properties that V/(0) = Vi(1) = d;{‘é' 0)= d:[‘(f’ 0) =
n'(0) = n'(1) = 0. For &, &, > 0 (small enough), one consider a variation y (g1, &;) in the
formt — pi(t) = (x'(t) + &, Vi(t), p; + €21 (¢)). Necessary conditions that I (y) be a criti-
cal value of I (y (g1, &;)) are given vanishing partial derivatives of I (y (¢1, &;)) with respect
to &) and &, in (¢ =0, &, = 0). This condition gives

! 1 dtvi 9Hy, . 9H, dV!
/ pi(t)———— —k Oyip =0
0 (k—1)! di* axi Ay dr

1 9H, d*'V?
_ dr=0
oot (k — 1)1 dy*k=Di k=1

(1), pi(t)). We consider a vector field V' and a covector

and

T 1 dkxt dH,
/[——i— 0 ]n,-dz=o.
0 k! dt Bp(k_l),-

Integrating successively by parts the terms that contain derivatives of V', we obtain the
following equivalent form of the first integral:

T(=D*d*p; 9Hy, d 9H —DF @t 9H, ‘
/ e e O |vidr=o.
o L k! di*  axt  drdyMi (k — 1)! dtk=1 gy&=Di

Since the curve y is arbitrary, we obtain the Hamilton equation in the condensed form:

(=D*d*p; 8Hy, d 3H, (=Dt oH,
k! dik 9xt 0 dr ayMi (k — D! dik=1 gyGk=bi — = o
Ld'x'  0Hy
kUdik dpgeni
: M i k=1 i
where y(i = 4 yk=Di = ﬁétﬁ-

Notice that for k = 1, the formulas (7) are also valid in the form:

_dpi 9H, _0
dt  oxi ’

dxi 3H0 o

dt  dpoy

i.e. the well-known Hamilton equation of the Hamiltonian Hj.
We consider, for an affine k-Hamiltonian 4 (k > 2) and the local domain U, the energy
&y given by the local formula:

v =poiyV - k= Dpapiy ™+ kHo(x, y VL vy T b (8)

Proposition 4.1 The local functions Ey glue together to a global function & :
T*T*'M — R.
@Springer
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Proof Using the change rules (2), (3) and (5), we have:

Py -+ k= Dy + kHo(x, y My D )
ax” ay " dyk=nr’ i
i+ =P+t — pa—nir |y
(a T Doy’ axi P axi PED )y

i’ 3yl N
+2<ay(1)1 P+ -+ W!’(k—w)y( i
dyk—2r §y k=D .
+ (k — )( =2 P&=2)i’ + ml?(k—l)ﬂ y( )i +kH,
= poiry™ + 4 (k= Dpeay ™™ + pane T4
+ kHy(x', y Vi, ykDi Pani)s

thus the conclusion follows. |

We call the function &, the energy of the affine Hamiltonian /.

The manifold 7*T*!M has a canonical symplectic structure given by §2 = dp) A
dx' +dpay AdyV' + .- +dpg_1y A dy* Vi, The Hamiltonian vector field Xz which

corresponds to the function £ : T*T*~!M — R is defined according to the formula d€ =
ix. §2 and it has the local expression:

dpoyi 9xT  dpay Ay dp—1y; dy k=D
€ 0 € 0 & d
ax Op )i gy pai Ay*=Di dp_y;

An integral curve of the Hamiltonian vector field X, is a solution of the differential
equations:

dx! .
— — i
a0
dy@ |
);t = (a4 Dy@“r?r, a=1k-2,
(k—1)i H
7y ©)
dt P&y
dpoy _k dHy
dt oxi’
dp)i dHy
2 —km —ape-ni, a=1k—1,

which we call the Hamilton equation (in the vectorial form) of the affine Hamiltonian /. No-
tice that this form and the condensed form (7) are equivalent, giving the Hamilton equation
of the affine Hamiltonian 4.

Theorem 4.1 An integral curve I' of the Hamiltonian vector field X ¢, projects on a curve
y on T*M which is a solution of the Hamilton equation of the affine Hamiltonian h in the
form (), thus y is a critical curve for the action I .
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Proof The integral curve I is a solution of a local differential equation having the form (9).
It projects on the curve ¥ on T*M given in local coordinates by y (¢) = (x'(¢), D1y (1)).
By a straightforward verification, the differential equations (9) implies that the Hamilton
equation (7) hold. O

Let us regard & as a Hamiltonian function on T*T*~!'M. For any curve I" : [0, 1] —
T*T*'M, I'(t) = (x' (), yVi(0), ..., y* Vi), Py (1), ..., p—1)i(?)) the integral action
of & along the curve I" is given by the formula

dxi dy(l)i dy(kfl)i

i
I () = il . AN
&I /0 [P(O)z R + Py 7 + -+ Pa-nyi T

i k=1
Wit L, y®=bi P(O)i,--~,[7(k—1)i)j|dl,

1 dxi _ dy Wi A
I I = =T (i X ] (2)i
&) /0 [P(on( 7 ) + P(l)z( 7 y

— &',y

thus

(k=2)i i
+ -+ )i — (k=1 -t
Dk-2) < ar ( )y )
k=D . A
+ Pk—ni —kHo(xlvy(l)l,~-.,y(k71)',P(k7|)i)i|df-

If the curve I" has the property that

dx! o dy®=2i
e~ 7 dt
then I, (I") = 1(y).
Let us consider a curve y : [0, 1] — T*M; we say thata curve I" : [0, 1] — T*T*'M is
aliftof y to T*T*"'M if p = IT o I', where y : [0, 1] — T**M is the lift of y to T** M
and IT’ is the canonical projection defined in (4), i.e. the diagram

= (k—1)y* i, (10)

[0,1] = T*TF'm
ly v/
T**M

is commutative. ,
Ifs:U CT*M — T*T*'M is a section of the fibered manifold 7*T*' p 2> TFM,
where U is an open set of T** M which contains ([0, 1]), then I" = s o y is a lift of y to
T*T'M.
We have the following relation between critical curves of actions I and Ig,.

Theorem 4.2 If I is a critical curve in T*T*~' M for the action I¢, and yy is its projection
curve in T*M , then the curve y, is a critical curve for the action I and I¢,(Iy) = I (yp).

Proof Since I is a critical curve in T*T*~'M for the action I¢,, it is a solution of the
vectorial Hamilton equation in the form (9). Using Theorem 4.1, it follows that the curve yy
in T*M is a solution of the Hamilton equation in the form (7). O
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Corollary 4.1 If I} is a critical curve for the action Ig,, then it is a lift to T*T*'M of a
critical curve y, for the action 1.

Proof Let y, be the projection of Iy to T*M, i.e. yy is obtained as [0, 1] E; T*T"‘lMi
T*M — T*M. It is clear that Iy is a lift of y and using the above theorem y is a critical
curve for the action /. O

/\‘i“/ vectorial Hamiltonian of order k on M is a function H : T**M — R, differentiable on
T* M (i.e. T** M without the null section). The vectorial Hamiltonian is hyperregular if the
vertical Hessian (%) of H is non-degenerate and the Legendre* map is a diffeomorphism
on its image. In this case the vertical Hessian defines a non-degenerate bilinear form on the
fibers of the vertical bundle Vm. The vectorial Hamiltonian defined here is called simply
a Hamiltonian in [7, 8]. We say that this Hamiltonian is vecforial, in order to distinguish it
from the affine Hamiltonian already defined before.

Using Proposition 2.1, we obtain the following relation between affine and vectorial
Hamiltonians.

Proposition 4.2 Let s : T"='M — T*M be an affine section.

1. If H:T*M — R is a vectorial Hamiltonian, then the local functions Hy = H (x', yV?,

YRV sy sty Ly %D s define an affine Hamiltonian h of order k

on M.
2. Conversely, if h is an affine Hamiltonian of order k on M, then the local functions H =
Hy(x!, yOr o y*=Dipy —si(x, yWi L y®&=Diy b define a vectorial Hamiltonian

of order k on M.

Notice that a vectorial Hamiltonian A and an affine Hamiltonian 4 define together an

affine section on the affine bundle T*M — T*~1M; locally, this is given by s’ = % - %
Thus an affine section is an essential ingredient in a correspondence between vectorial

and affine Hamiltonians.

5 Zermelo Conditions

The Zermelo conditions in higher order geometry are discussed for Lagrangians in [6,
Chap. 8] and for vectorial Hamiltonians in [8, Chap. 5]. The integral action considered
here for an affine Hamiltonian is completely different from that used in [8, Chap. 5] for a
vectorial Hamiltonian, but the calculation of Zermelo conditions follows the same ideas.

The Zermelo conditions are necessary conditions imposed to the affine Hamiltonian, in
order that the integral action (6) do not depend on the parametrization of an arbitrary curve
y:[0,1] > T*M.

Let7:[0,1] — [a, b] ({(0) =a, (1) = b), be a diffeomorphism that defines a new para-
metrization of the curve y, which has the local form y (f) = (X (f), p; (7)), f € [a, b]. The
condition that the integral action (6) do not depend on the parametrization leads to the con-
dition that the integrand terms be the same, i.e.
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1 _dkx ci( & dx! 1 dly dr
——PDi—= — X, —=,. —_— , Di
k=P g o\ e ) ar

_ 1 dkxi CH idxi 1 dF 1yt 1
T h—nPaw TN s = o a0 P ) (1n

The right side of the above equality can be regarded as a function on ¢, but via . We have
dxl _ dxf di 2y dz' 2y dil &% &y _ & diy3 L ydPal di PP dx BT
A T ardi ar ( ) e = G+ 3 g oat 7 o5 and so on.

The left side of the equahty (11) depends on the diffeomorphism 7 via the derivative d—f,

. . . . . ~ . . . e 27 k7
while the right side depends on the diffeomorphism # via the derivatives %, %, e %

Differentiating both sides of the equality (11) with respect to , then letting t = £, we have

1 dkxi . dx? 1 dF 1y
— X, — iy ———, Pi
k=1 Pigee R\ k-1 a1 P

1 dkxi dH, dx’ dH, d*x! k dH, d*'x!

T k-m” ayVi dr " ay®i dr? (k — 1)l y*=Di grk=1"

thus

k1
Hy= I (Hp), (12)

k=1 4 o
where [ =y By?l)i + ot (k= 1)y*bi ainl)i is a Liouville vector field. Notice that

along the curve y we have y@' = L ’f;f;i, =1,k—1.
Differentiating the both sides of the equality (11) with respect to <

we have
k 1 dF 1y dHy 1 [(2\dx! 9Hy 1 [/3\d*x!
0=p; —k p— - k= — -
2) (k= 1) dt+! ay@i 21\2) dt ay®i 31\2) dr?

(OH L (k=
ay*k=2i k= DI\ 2 ) a2

< o, ! then taking ¢t =7,

thus

. k—2
(k= Dpiy* V' =T (Hy),

where

k=2

3 4
— yi (k=2)i
r=y FEY +o k= 1y

ay(k—l)i

is a Liouville vector field.
Successwely, differentiating the both sides of the equality (11) with respect to ¢ o L.,

ak—1

T L then taking ¢ = 7, one obtain:

. a—1 -
apiy®™ = T (Hy), (Ma=2k—1. (13)
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Let us assume that k > 2. If we differentiate the both sides of the equality (11) with

respect to then taking ¢ = 7, we obtain the condition that the curve y must fulfill:

d"’

' (14)
Prar =7
Thus the integral action is dependent of the parametrization of curves, provided that the
curve do not satisfy condition (14).
Equations (12) and (13) constitute the set of Zermelo conditions for the affine Hamil-
tonian &, while (14) is the Zermelo condition for the curve. It follows that, in general, we
have the following conclusion.

Proposition 5.1 The integral action (6) depends on a parametrization of a curve, provided

that the curve do not satisfy the condition (14), thus there are no Zermelo conditions for an
affine Hamiltonian.

6 Lagrangians of Order k

Let us consider a Lagrangian L of order k on M, thus L : 7/“?1\71 — R is differentiable.
We say that L is hyperregular if its vertical Hessian (%) is non-degenerate and the

Legendre map £ : T*M — TM, (x', yVi, ... (")’)—>(x yWi o yk=Di af(—ﬁ),) is a
global diffeomorphism.

The Legendre map defines an £-morphism of the vertical vector bundles VTEM —

VT*M (called the vertical Legendre morphism) and expressed in local coordinates on
fibers by (y®7, ¥/) — ()y(k),, 'm) The following result is classical. It is stated

in [1, Chap. 3, Sect. 1.4] for the Euclidean case M = R!, then for a manifold M, only for
convex Lagrangians, for a local Lagrangian.

Theorem 6.1
(@) Let L : T*M — R be a hyperregular Lagrangian of order k on M. Considering local

. . ) -1 . .
coordinates, let (x', yMi .. . y&=Di py S HI @, yOi L y & b)Y be the local
form of the inverse L™" of the Legendre map. Then the local functions given by
Ho(x', y i y&=Di o
= ijj(xi7 y(l)iv RER) y(k_l)i7 pl)
— Ly y Dy yEE )

define a hyperregular affine Hamiltonian of order k on M and the vertical Legendre
morphism is an isometry .
(b) Conversely, let h be a hyperregular aﬁ‘ine Hamiltonian of order k on M. Considering lo-

cal coordinates, let (x', y Vi | ... U‘)’) _> (et y Wiy kD ey i iy
be the local form of the inverse H of the Legendre™ map. Then the local functions given
by

L(x', yMi . y®h
= yOTL; ey Wy = Ho (e y Dy Ly Dy
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define a global hyperregular Lagrangian of order k on M and the vertical Legendre*
morphism is an isometry .
(c) The constructions (a) and (b) are inverse each to the other.

We say that the hyperregular Lagrangian and the affine Hamiltonian that corresponds
according to Theorem 6.1 are dual each to the other.
Let us apply this constructions to convex affine Hamiltonians and Lagrangians

We say that the affine Hamiltonian % of order k on M is positively defined (or convex
—02Hy
apidpj
‘H* is a local diffeomorphism, but we suppose in that follows that H* is a global diffeomor-
phism, i.e.  is hyperregular. We denote by L the dual Lagrangian given by Theorem 6.1. It

is easy to see that L is positively defined.

according to [1]) if the matrix ( ) is positively defined. It follows that the Legendre map

Proposition 6.1

1. Assume that the Lagrangian L is hyperregular and positively defined and let h be its dual
hyperregular affine Hamiltonian. Then h is positively defined and the local functions H
of h are given by

i (i k—1)i k)i i (D i
Ho(x', y ™, y® D py = max  (piy®™ — L, y ™, y®0)
(),(k)r YR
and the maximum is taken for y®O' = H' (x', yOi .. y*=Di p)y,

2. Assume that the Hamiltonian h is hyperregular and positively defined and let L be its
dual hyperregular affine Lagrangian. Then L is positively defined and if Hy is a local
function of h then L is given locally by

i (i ki ki P (i k—1)i
L(x', y M o, y®h = max, (piy ™" — Ho(x', y Vi, . y*Di py)
and the maximum is taken for p; = L;(x", y7 ... y®1),

Proof 1. The positivity of i follows from the fact that the Hessians of L and its dual & are

inverse one to the other. The real function R” 5 y®? = p,y®i — L(x?, yW7  y®iy e R
is concave and according to Fermat principle it has a unique maximum given by the only
root H' of % =0.But af%l =p;— (,,)‘?(—ﬁ)i(x“, yWi o y®iy Tt follows that the maximum
is taken for y®! = Hi(x!, yi  y&*=Di 5y,

2. It follows by duality. 0

Notice that, since H is only local a function, the considerations performed in [1, Chap. 3,
Sect. 1.4] have only a local validity.

Let H be a vectorial Hamiltonian of order k on M and s : T*"'M — T*M be an affine
section. Then H and s define canonically an affine Hamiltonian % of order k on M (Propo-
sition 4.2). If H is hyperregular, then % is also hyperregular. In the case when the Legendre*
map of 4 is a diffeomorphism, then / defines a Lagrangian L of order k on M. In this way,
as in [8], a non-canonical one to one correspondences between Lagrangians and vectorial
Hamiltonians follows, via Legendre maps; it is non-canonical since it depends essentially
on the section s.
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For any curve y : [0, 1] = M , we define the integral action of L along the curve y by

the formula
1) /IL ; dx! 1 d*x’ dr
= Xy s T T ,
V=, dr Uk drk

where y has the local form t—y>(xi (1)). The critical condition (or Fermat condition in the
case of an extremum) can be used for the integral action using similar arguments as in [8,
Chap. 5] (where it is used in the case of an extremum and it is called an extremum condition).
It gives the Euler—Lagrange equation. A curve y : [0, 1] — M, y(t) = (x'(¢)) is a solution
curve of the Euler—Lagrange equation of the Lagrangian L if

6L 14 oL o 1)k1d" L _,
axi 1ldr gymi k! dek gy®i 7

(15)

along the curve y® : I — T*M, y® @) = (x' (1), %%(t), . ﬁ‘i—x,:(t)). This equation

is expressed in terms of the Jacobi—Ostrogradski momenta in [1, 8]. Here these Jacobi—
Ostrogradski momenta are (py;, - - -, Pa—1)i), viewed here as coordinates on T*T*M.
Let us consider that the Lagrangian L is hyperregular and let (x?, y7 ..., y®=Di,

-1 . o , .
p,-)l:—> (xf, y Wi &b ity Wiy &=Di ) be the inverse of the Legendre

map. Thus 37 (', y 7L, y & 1y Ly & p)) = prand B, y 0,
L.,y —Bg(ﬁ)i @f, yWi o yE=Di y®iyy — v Tt follows that ‘;pi' =g/ Let us con-
J

sider the affine Hamiltonian A corresponding to L, according to Theorem 6.1. We call the

—_~—

total energy of the hyperregular Lagrangian L to be the energy function £ : T*T*M — R
of h. Taking into account the local form of £ given by (8) and the definition of H, given by
Theorem 6.1, we obtain:

E=poiy" + -+ (k= Dpu_ayiy®"
+kpa—ni H (x', y P yE Y b
— kLG y My y DTy D b)), (16)

An integral curve of the Hamiltonian vector field X¢ is a solution of the first order dif-
ferential equations, determined by the Lagrangian L:

dx! . o0&

dt o 8]7(0),' ’

dy@i &

A . a=Tk—1,
dt ap(a),-

dpw)i

Pai __ 9 5ET
dt oy @i

These are called as Hamilton—Jacobi equations in [6] and as generalized Euler-Lagrange
dynamical equations in [5]. Notice that £ has different meanings in [5, 6].
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Thus an integral curve of the vector field X¢ is a solution of the differential equations:

dx! .
ax _ mi
a7
dy @i |
Zt — (@ + 1)yt a=Tk=2,
(k—1)i
dydt kI, (17)
dpoi _, 0L
dt axi’
dp(a),‘ oL o E——
7 =kw —0P@-1i, oa=1,k—1,
if k > 2 and
dx’ o
pr H'(x’, po);),
dp() i 5 . . .
% = %(X’, H'(x’, poy;)),

in the case k = 1. This case recovers the Hamilton equation:

dx! a&

dr  opi

dpoyi _ _ 3¢
dt axi’

where E(x7, py;) = piH (x/, p);) — L(x?, H (x/, p();)) is the energy of L and & is
viewed as a Hamiltonian of order 1 on M.
Similar to the Hamiltonian case (Theorem 4.1), one has the following result.

Theorem 6.2 Assume that the Lagrangian L is hyperregular. Then the integral curves of
the Hamiltonian vector field X ¢ projects on curves on M which are solutions of the Euler—
Lagrange equation of L.

Proof Let us consider the fibered product 7¥M = T*T*"'M x gi-1,, T*M, where both the
fibered manifolds T*T*'M — T*~'M (a vector bundle) and T¥M — T*~'M (an affine
bundle) are considered over the same base, 7X~' M. Consider some local coordinates: (x*,
YOy =Dy o TRETAg () y O R @iy on TRA (xf, yMi L yE=Di
P©is---s p(k,]),') on T*TkilM and (.X[, y(l)i, ey y(kil)i, y(k)[, P©)is--s p(k,|),') on TkM.
The hyperregular Lagrangian L defines a canonical embedding 7 : T*T*~'M — T*M given
in local coordinates by (x?, y®7, ... y*=Di, p(o)i,...,p(k_l),»)—l>(xi, yWi o yk=bi
Hix, yDi Ly & b 0Dy Poyis---» Pie—1yi)» Where H' is the local form of the
inverse £~! of the Legendre map £ of L, considered previously. The submanifold
I(T*T*"'M) C T*M is given also by the local equation pu_1); = 7567 (x*, yV7, ..., y®7)
on T*M. Using the system (17) one obtain that the equation (15) is satisfied along the
integral curves of the Hamiltonian vector field X¢. O
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A Lagrangian and its dual Hamiltonian are related as follows.

Theorem 6.3 Assume that the Lagrangian L or its dual affine Hamiltonian h is hyperreg-
ular. Then L and h have the same energy thus they have the same Hamiltonian vector field
on TF'M.

Proof The fact that L and & have the same energy follows from formulas (8) and (16), using
the form of Legendre map given by Theorem 6.1. O

Corollary 6.1 Assume that the Lagrangian L or its dual affine Hamiltonian h is hyper-
regular. Then the curves on M that are solutions of the Euler—Lagrange equation of L are
the same as the projections on M of the curves on T*M that are solutions of the Hamilton
equation of h.

We consider now some non-trivial examples. For sake of simplicity we take k = 2.

Let L : TM — Rbe aLagrangian. Let us consider L® : T?M — R, L® (x?, y(Vi, y@i) =
goL(x', yO) 46 L(x', z®"), where gg, 6] € R, 8, £ 0, 7P = y@' —§7(x", yVy and 25" =
g/!(y! L. — L) are the components of the semi-spray of L . We denote by H : T*M — R

axlyl  axJ
the dual Hamiltonian that corresponds to L, i.e. H(x, p;) = p;H' (x', p;) — L(x', H'),
where 2L (xi, Hi(x', py)) = p;.
We have L7 = gy 2L (x/, y®) — §i(x), y09)) = p;, thus yO = i/, y)) +
Hi(xjs il’_/)

e pi(xd, y M p;). It follows that the dual affine Hamiltonian that corre-
sponds to L® is 2H® (x/, y VI, py = pihi (x7, yVI, p)) =L@ (x/, yVI by = pi§i(xd, yDi)+
piH (), pp)—eoL(x', yV) —e i L(x', HI (¥, Fpj) = piS (e, y) +e 1 HO, 1-pj)
—eoL(x7, y(l)j)_

The energy of L® is EP(x', yV7, poyi, pay) = poyiy™ + 2HP (x', y Vi, payi), or
EDx, y Vi poyis Py) = Py + pay ST, yOIy e H(x, ép(l)j)_goL(xj’ yiy,

The Hamiltonian field of £? is X0 = 0e® o 4 0e@ o 9e® o 0e® 5

. SED T pyi axT T dpayi oy DT axT dpy a7 dpay
Thus the integral curves of the Hamiltonian vector field X« are given by the equations:

dx!

ax _ i
ar 0
dyM o O dH [/ .1
=S/, yWiy 4 — x/,— -,
a1 (7, ¥y Py Payj
dp(o)l 08 BH 1 . .
X!,y x —pay; YD),
7 = P0G ( Py & P )
dp(l)' BS . . .
0 = =Py — P(l)jm(xj, y7) + g0 3o (67, y ).
If we denote ip(l),- = z;, we have: -poy = 257 av<1)' (x4, yDiy — vf’if(xj yiy —
L thus £(y 07 2L (el y D) o (HI (ed, 25) + 89l y00) S8 (x, yD)) — 24 =
z_tl)%(xj yiy — A&(xj yiy — %(lej) and d);i([l) — Hi(x),z) 4+ S (x/, y(l)-’), thus
,(DJj
zi= g (), B =Sk, y DRy,
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Discussion: 2
If E—O — 0 (or even when gy, = 0), it follows the equation ddtzz’ =z ‘;i’ (x/, yMiy 4
(x’ Z,)

If & — 0, it follows the equation y/ 38 g) (cd, y Wy + (HI(x7, ;) + 87 (x/, yDT)) x

T (xf y 7y = 2L (x/, yWJ), thus HI (x/,z;) =0
Let us suppose that the equation H'(x/,z;) = 0 has as solution z; = ¢;(x') and
x/, /) — %(xj, y/) is continuous in (x/, y/ = 0). Then since g—VL,-(xj, H'(x/,z;)) =z,

I)X‘

it follows that ¢; (x') = jVL, (', H'(x', i (x))) = 25 (x', 0). Thus along a geodesic of L,
taking z; = goj(xi) = S(]),(X 0), we have H/ (x/, z;)=0
Let us consider some particular cases.

Example 1 In the canonical Euclidean plane E? we consider the Lagrangian L(x', y) =
Lx',x%,y', y?) = 3((")? + (»)?). We have S' = §? =0 and the dual Hamiltonian of
Lis H(x', p;) = 2((p1)2 + (p2)?). The second order energy is £@ (x', Y%, poyi, payi) =

poiy "'+ E((p(l)l) + (pa2)?) =2 ((IH + (yIH2).
The Hamilton equation is:

dx' dE®
dt 8p(0),»
Ay 9g® ]

ar e = ap(l)n

dp(O)i 38(2)

— yi,

)

dt ax!
dp(l),* 85(2) ;
dr  aymi PO + oy
It follows that < *4 + o d £ =0, where « = —22. The solutions of this differential equa-

tion can be easy found We analyze briefly the general solutlons in different cases.

If « =0, i.e. &y =0, the general solution has the form x' = a;¢> + b;t*> + ¢;t + d;, where
a, b,’, Ci and d,' eR.

If o <0,i.e. &€& > 0, the general solution has the form x’ = a; cos /o + b; sint /o +
c;t +d;, where a;, b;, ¢; and d; € R.

If @ >0, ie. & - & < 0, the general solution has the form x' = g; cosht/—a +
b; sinhty/—a + c;t + d;, where a;, b;, ¢; and d; € R.

Notice that if &; = ¢, = € # 0, the general solution is the same; thus the “size”, given
by ¢ is not important for the solution of the Hamilton equation.

Example 2 A similar discussion can be performed in the canonical Euclidean plane E2,
considering the Lagrangian L(x’, y') = L((x", x?), (»", y*) = 3(OD* + D) + a1y' +
ay?, where a;, a, € R are constants.

Example 3 In the canonical Euclidean plane E? we consider a function V : E? — R and
the Lagrangian L(x', y') = L((x', x»), (3", y)) = 3((0")? + (")) + V(x'). We have H =
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%((pl)2 +(p)?)—VExi)and §' = -1 3—‘/ The Hamilton equation becomes:
dzx’ 1 REa%
A T 22 Py
dp; 13V
dr ~ 2gx TP

Let us consider some particular cases for V.

The first case is V (x') = a;x', where «; are constants and a,2 + a% # 0. The first equation
gives “Ztﬁx =— %ai (€0 + €1), thus the solution curves of Hamilton equation (critical curves)
are parabolas if gy + &1 # 0 and straight lines if gy + &; = 0. Notice that the critical curves
depend only on gy + €.

The second case is V(x') = > (x)?, i.e. V has a spherical symmetry. In this case the

equation of critical curves is:

T et e
—— = —2(gp +&1)x' — pi;
a0 0T €l p
d’p; ;

a2 o +ée1pi-

The equation can be integrated as follows. Take z; = x’ 4 Bp; such that & o 2' = yz;, thus
—2(g9+€1) — =y and —1 + Be; = yB. It follows that 8% + B(2ey + 3e;) — 1 =0 with
non-null real roots B; # Bo. We have y; 5, = —2(g9 +&1) — P12 = —UeotSe E ¥ (280“8')2“

thus y; # y,. According to y; and y, one obtains the general solution that glves the equa-
tion of critical curves. Let f; = x' + B, p; and g; = x' + B, p; be the general solutions that
ﬁzﬂf’ g‘g‘ is the general solution of

corresponds to y; and y, respectively. We have that x’
the equation of critical curves in this case.
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